Divergent Jacobi polynomial series

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent Legendre-sobolev Polynomial Series

Let be introduced the Sobolev-type inner product (f, g) = 1 2 Z 1 −1 f(x)g(x)dx + M [f ′(1)g′(1) + f ′(−1)g′(−1)], where M ≥ 0. In this paper we will prove that for 1 ≤ p ≤ 4 3 there are functions f ∈ L([−1, 1]) whose Fourier expansion in terms of the orthonormal polynomials with respect to the above Sobolev inner product are divergent almost everywhere on [−1, 1]. We also show that, for some v...

متن کامل

Constrained Jacobi Polynomial and Constrained Chebyshev Polynomial

In this paper, we present the constrained Jacobi polynomial which is equal to the constrained Chebyshev polynomial up to constant multiplication. For degree n = 4, 5, we find the constrained Jacobi polynomial, and for n ≥ 6, we present the normalized constrained Jacobi polynomial which is similar to the constrained Chebyshev polynomial.

متن کامل

Divergent Cesàro Means of Jacobi-Sobolev Expansions

Let μ be the Jacobi measure supported on the interval [−1, 1]. Let introduce the Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f(x)g(x) dμ(x) +Mf(1)g(1) +Nf ′(1)g′(1), where M,N ≥ 0. In this paper we prove that, for certain indices δ, there are functions whose Cesàro means of order δ in the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product ar...

متن کامل

On Absolutely Divergent Series

We show that in the א2-stage countable support iteration of Mathias forcing over a model of CH the complete Boolean algebra generated by absolutely divergent series under eventual dominance is not isomorphic to the completion of P (ω)/fin. This complements Vojtáš’ result, that under cf(c) = p the two algebras are isomorphic [15].

متن کامل

Operators and Divergent Series

We give a natural extension of the classical definition of Césaro convergence of a divergent sequence/function. This involves understanding the spectrum of eigenvalues and eigenvectors of a certain Césaro operator on a suitable space of functions or sequences. The essential idea is applicable in identical fashion to other summation methods such as Borel’s. As an example we show how to obtain th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1983

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1983-0684639-4